
Design and Implementation of a Menu Based OSCAR Command Line Interface

Wesley Bland1,2, Thomas Naughton1, Geoffroy Vallée1, and Stephen L. Scott1 ∗

1Oak Ridge National Laboratory
Computer Science and Mathematics Division

Oak Ridge, TN 37831, USA

2Tennessee Technological University
Cookeville, TN 38505, USA

Abstract

The Open Source Cluster Application Resources (OS-
CAR) toolkit is used to build and maintain HPC clusters.
The OSCAR cluster installer provides a graphical user in-
terface (GUI) “wizard” that directs the user through the
installation process. This GUI is useful for general usage,
but in some instances a more basic interface is desirable.
Therefore, a command line interface (CLI) has been devel-
oped for the OSCAR installer. Through the CLI, the OS-
CAR installer is better equipped to support scripting, which
aids more advanced testing scenarios and helps in cluster
replication. Additionally, the CLI is better suited for remote
installations using OSCAR.

While a graphical user interface simplifies installation
for occasional users, frequent users and the OSCAR devel-
opers will find the CLI beneficial. For developers, the CLI
will make testing easier because it may now be scripted for
automated testing. Furthermore, because the CLI creates
logs of user input, the user may create an exact duplicate
of a previous installation, which could be used in later re-
builds or for diagnostic purposes when reporting issues to
the developers. This paper provides an overview of the de-
sign and capabilities of the OSCAR CLI along with a brief
discussion of possible future work.

1 Introduction

The Open Source Cluster Application Resources (OS-
CAR) toolkit is used to build and maintain HPC clusters [6].
Since its release in April 2001, the OSCAR cluster installer
has offered a graphical user interface (GUI) that directs the

∗ORNL’s work was supported by the U.S. Department of Energy, under
Contract DE-AC05-00OR22725.

user through the installation process. This GUI “OSCAR
Wizard” is useful for general users, but for quite some time
there has been interest in the OSCAR community for a more
basic interface to manage the installation process. In re-
sponse, a command line interface (CLI) to OSCAR has been
developed.

The CLI expands the capabilities of OSCAR, allowing
for improved automation and replication. Additionally, the
CLI is better suited for lower bandwidth remote installa-
tions where the graphical X Window environment was often
too cumbersome. The CLI can be used by administrators
(and developers) during cluster testing by providing a more
“script friendly” interface to aid automation.

The remainder of the paper includes, a brief overview of
past work (Section 2) as well as the motivation (Section 3)
and design (Section 4) for the OSCAR CLI. Followed by a
description of the current CLI implementation (Section 5)
along with some comments for future work (Section 6) and
concluding remarks (Section 7).

2 Background

OSCAR bundles tools for building, programming, and
using High Performance Computing (HPC) clusters [6].
It includes many software applications combined to form
“OSCAR Packages” that give basic and advanced function-
ality for clusters. There are also tools for cluster installation
and maintenance.

A basic tenet of OSCAR is to leverage previously ac-
cepted solutions whenever possible to avoid duplication of
effort. Thus, the “core” (required) infrastructure includes
well known tools for cluster administration. These include:
System Installation Suite (SIS) 1, Cluster, Command, and

1SIS is comprised of SystemInstaller, SystemImager and SystemCon-
figurator. All tools are generally available but the SystemInstaller and Sys-

21st International Symposium on High Performance Computing Systems and Applications(HPCS'07)
0-7695-2813-9/07 $20.00 © 2007

Control (C3), Env-Switcher/Modules, and base OSCAR li-
braries/scripts [2, 3, 4, 5].

Previously, des Ligneris and Camargos [1] outlined a
plan for an OSCAR CLI. This paper discussed a method
where all inputs for the OSCAR install were derived from
the command line as opposed to the standard graphical OS-
CAR Wizard. The approached described separate command
line tools that mirrored much of the graphical interface, pro-
viding a rich interface available entirely from a text-only
console. However, this work was never introduced into
the central OSCAR development repository. Additionally,
the approach faced some disadvantages that the current ap-
proach seeks to overcome. These include a more complex
usage scenarios due to the increased flexibility of separate
CLI commands and no simple way to force sequencing to
accommodate the ordering expected by OSCAR. This lat-
ter aspect, while possible under the multiple command ap-
proach, introduces a risk where a user could accidently ex-
ecute steps in an order that would cause problems or errors
during the installation.

There were also more elaborate designed plans to over-
haul the OSCAR interface entirely. The idea being to
change OSCAR to follow a state-machine approach with
menus produced for each stage of the install. The basic
premise being similar to that of standard Linux distribution
install engines where early steps may use an alternate inter-
face, e.g., ncurses, before setting up the X Window sys-
tem and then using an X based interface. The preliminary
design and initial coding was developed under the project
name, Meta Menu [8]. However, project objectives changed
as did developer time allocations, leaving the project or-
phaned before completion.

3 Motivation

A key advantage to a GUI is that it allows inexperienced
users to interact with the software tool. This is achieved by
presenting the software’s capabilities through standard user
interface idioms, e.g., buttons for available actions (com-
mands). The advantage being that a user does not have to
memorize a list of commands in order to use the tool. Con-
versely, if the interface is strictly CLI based the learning
curve can be much steeper, where all commands must be
known by the user in order to make use of the software [7].
However, one approach to overcome the overhead associ-
ated with a CLI is to use menus. In this scenario, the user
is able to select actions offered by the tool, which offers ad-
vantages similar to those of a GUI albeit in a much more
basic format. Lastly, a CLI has the advantage of being more
conducive to automation because the input/output is text-
based.

temConfigurator components are the most commonly used pieces outside
of OSCAR.

The OSCAR toolkit has employed a GUI to assist in the
installation and management of HPC clusters with a mini-
mum amount of user experience. This OSCAR GUI “Wiz-
ard” has been sufficient thus far in the project and fit well
with the general project goals of user simplicity. The GUI
gives the user quick access to OSCAR without requiring a
complex understanding of its inner workings. The OSCAR
GUI accomplishes this by leading the user through the in-
stallation and hiding extra details and capabilities. How-
ever, in some instances an alternate interface would be ben-
eficial to some advanced users and OSCAR developers.

For example, as the number of supported Linux distribu-
tions and hardware architectures grow the need for a simpler
user interface becomes more important. Every time a new
distribution is added to OSCAR, it must be tested exten-
sively to ensure that it works well with the existing OSCAR
code. The addition of a command line interface (CLI) in-
creases the options users have to interact with OSCAR and
creates a greater potential for automation. This latter as-
pect becomes paramount as the supported platforms grow
in number and testing and validation of OSCAR increases
in complexity.

As mentioned in Section 2, there have been previous at-
tempts to develop an alternative to the current OSCAR user
interface. The prior work [1] was entirely command line
oriented and Meta Menu [8] sought to provide a more ver-
satile approach that would allow for different presentation
layers, e.g., graphical, text-based. The current approach
tries to take an intermediate approach, where the usability
of the graphical environment is reflected in a menu-based
interface, and the power of the command line environment
comes from the ability to automate and reuse installations.

In Spolsky’s discussion of user interfaces [7], he cites the
menu-based approach to designing an interface as a way to
improve usability. While the GUI has a more user-friendly
design with a click-able interface, the text-based installation
should still have some measure of interactive convenience.
The menu-based interface used in the text-based version is
described in detail in Section 4. Both the past and current
CLI approaches offer automation via scripting, but the cur-
rent approach actually saves the user input as it is entered
for later reuse. Otherwise the user is forced to know all
commands and options a priori. Additionally, the separation
of the commands causes (potential) problems if the proper
command sequence is not maintained, based on the rules of
ordering OSCAR currently expects. The current text-only
menu based approach, that saves input for later reuse, hon-
ors both the ordering requirements, and enables automation
while maintaining a reasonable usage model.

One phase of development that is under constant im-
provement is testing. It is one of the most important stages
where many bugs could be caught and corrected, but in or-
der to catch these bugs, good testing practices must be in

21st International Symposium on High Performance Computing Systems and Applications(HPCS'07)
0-7695-2813-9/07 $20.00 © 2007

place. The OSCAR CLI has been written to be one of these
good practices. By using the CLI, developers can automate
the testing process which both speeds it up and improves its
accuracy. Testing can be completed faster when automated,
and is more accurate without the need for human interac-
tion.

Another way the OSCAR CLI improves the OSCAR
project is to allow scripting. Many users do not want to
have to manually perform the same steps every time they
do an installation and would like some way to do this auto-
matically. The new OSCAR CLI logs provide a way to do
this by writing to files the input the user gives during a CLI
installation. As the user types, the input is stored in a log
that can later be fed back into the installer as an input file.
Without any modification, an entire installation can be repli-
cated. Any or all of the steps can be done this way allowing
the user to customize the installation without having to be
a part of the process. Also, the user can modify the scripts
to do anything that can be done with the interactive instal-
lation. For example, if a user wants to add another node to
the cluster, he can change the logs from the Define OSCAR
Clients step to include one more node and without changing
anything else, can have the same installation as before with
one more node.

One thing users want is to reduce the overhead on their
machines as much as possible. The X Windows System
is a process that introduces the most overhead on a Linux
machine. For many users, the only time they use the graph-
ical interface on their cluster is when they are installing OS-
CAR. Without the graphical OSCAR interface, the admin-
istrator would not need to run an X server on their machine
and would save resources. This also allows the OSCAR in-
staller to be run over network lines that do not have enough
bandwidth to run a graphical interface. Many cluster users
do not always sit in front of the machines they are using and
being able to run the OSCAR installer remotely would be
very helpful. In order to provide both interfaces (graphical
and command line), the graphical libraries must still be in-
stalled on the head node, but the server does not need to be
running. If at a later time the administrator wants to use the
graphical version of the installation, the tools will still be
there and all that will be necessary is to start the X server.

Including the new CLI interface, OSCAR now has two
completely different types of interfaces for users. However,
many users might find another way that would work bet-
ter for them, or perhaps want to combine the use of OS-
CAR with other software. Using the CLI, the interface for
OSCAR has become much more extensible to allow other
methods of interaction with users. Any other kind of inter-
face can sit on top of the CLI and make system calls while
getting user input in the way that most appropriately helps
the user. Another way the CLI could be leveraged would be
if vendors were to take advantage of the new tool. Using the

CLI, they could write their own version of the OSCAR in-
stallation that is pre-customized for their own clusters. This
tool could be shipped out with the machines, providing the
buyers with a simple way to set up their new cluster.

4 Design

The CLI was designed to be as close to a mirror of the
GUI as possible so that a user could pick an interface not
based on functionality, but by which one would be most
useful. For the most part this goal has been achieved. Most
steps in the CLI closely mirror the GUI and will seem iden-
tical to the user. For a few steps there have been some minor
changes to the interface, but all the functionality provided
in the GUI is still present in the CLI. With one exception,
the optional GUI based Configurator is not accessible from
the CLI (see Section 5 for details). The Configurator is
the part of the OSCAR installation that allows the user to
change any default configurations in the packages installed
with OSCAR.

One thing the GUI does a very good job of is to make
sure that the user does not get ahead of himself when com-
pleting the OSCAR installation. This is a feature that
has been maintained in the CLI. The CLI guides the user
through the steps of the OSCAR installation process mak-
ing sure that each part is completed before moving on to the
next one. However, if the user does want to skip a step, it
is possible to do so by using command line flags. By main-
taining this progressive installation, the extensibility of the
CLI is maintained for other interfaces. The other interface
(or script) can communicate with the CLI using files with
the commands pre-loaded into them. These files have all
the same responses that a user would give if going through
a normal installation using the interactive form. In fact, as a
user completes the installation, these files are automatically
generated and saved for easy reproducibility later if the user
will be reinstalling the cluster.

Before the final step in the OSCAR installation, the
nodes must be rebooted individually so they can receive
their disk images from the server. This is the only step
that cannot be automated. Each different kind of cluster has
its own way to reboot the nodes and load the new images.
For example, with real physical nodes, the computers must
be physically rebooted with a way to load the images (i.e.
PXE). However, if the cluster is a virtual cluster or a com-
bination of the two, the new nodes may simply need to be
started up with a console command. To handle this problem
the command line version of OSCAR allows the user to let
the program know when to continue on in the installation.

21st International Symposium on High Performance Computing Systems and Applications(HPCS'07)
0-7695-2813-9/07 $20.00 © 2007

5 Implementation

The new CLI was implemented using Perl to maintain
consistency with the existing OSCAR code base. For the
most part, the new CLI scripts are fairly well isolated from
the other OSCAR code and use the existing libraries to in-
teract with the components of OSCAR. The exception to
this is the Setup Networking step in the GUI. In this area,
the code is very tightly coupled and much of the logic is
embedded in the GUI as opposed to a supporting library.
This resulted in CLI specific code being added to the same
module used by the GUI. Additionally, the tight coupling
led to code duplication. More details of this problem are
discussed in Section 6

Six of the eight steps in the OSCAR installation are di-
rect translations of the GUI interface to a text-based mode.
These steps should directly mirror the GUI mode that most
users are used to. The Setup Network step is slightly differ-
ent than the GUI because of an issue with the MAC address
selection. In the GUI, MAC addresses can either be: (i) read
from a file, or (ii) automatically detected when the machines
bootstrap. The CLI version does not provide the second fea-
ture. Currently, all MAC addresses are read from a file and
then assigned to computers based on the ordering from the
file. All other features related to network configuration of
cluster nodes are the same.

The Configurator step is the only step that has not been
translated to the new interface. Initial work on the Con-
figurator halted when issues with generating the dynamic
output and reading back input from the user arose involving
the way the Configurator was being stored. These issues are
being resolved and hopefully in a future version of OSCAR,
the command line Configurator will be completed.

The CLI has two main modes of execution: (i) interac-
tive, and (ii) non-interactive. In interactive mode, the user
is presented with menus similar to those of the GUI. To
start OSCAR in the interactive CLI mode, the command
line is similar to the standard invocation with the addition
of one option, e.g., install wizard --cli ethX.
The user is led through a series of menus where they select
from available options, provide input, and continue from
step-to-step in the installation process. The other form en-
ables the user to automate the entire process, avoiding any
input from the terminal. In non-interactive mode, more flags
can be added to the command line to make the CLI read in-
put from files rather than interactively prompting the user.
The command line options for this fully automated (non-
interactive) CLI mode are shown in Listing 1.

The node startup and installation phase function differ-
ently when working in either interactive or non-interactive
mode. In the interactive version of the CLI, the installa-
tion pauses at that point and waits for the user to enter some
text, but the non-interactive version requires a more auto-

matic method for building nodes. To aid this node automa-
tion, there is a flag in the OSCAR CLI installation called
--bootscript which accepts a user provided script that
will be executed to control automation of node boot/build.
This script can be as simple as beep and prompt for in-
put from the terminal (interactive for this single step), or
use of other tools for remote control of nodes, e.g., remote
power controllers, serial consoles, IPMI. Additionally, this
scripting hook could be employed to boot virtual machines
if working in a virtualized environment, which is common
during development and testing phases. The script follows
standard UNIX semantics and returns zero (0) on success
and non-zero in all other cases.

Listing 1. Flags to automate installation

−−o p k g s e l e c t o r f i l e #OSCAR Packages S e l e c t o r

−−b u i l d i m a g e f i l e # B u i l d C l i e n t Image

−−d e f i n e c l i e n t s f i l e # De f i ne OSCAR C l i e n t s

−−n e t w o r k c l i e n t s f i l e # Se tup C l i e n t Networking

−−b o o t s c r i p t f i l e # R e t u r n s 0 when a l l t h e
c l i e n t s have boo t e d wi th
t h e i r new d i s k images .

Note, a hybrid approach can be used where portions of
the installation are fully automated and others are inter-
active. Therefore, any options that are not provided via
CLI flags will be acquired through the interactive user in-
put menus. For example, if only one step has a file assigned
to it, that step will be the only one that will run without user
input. All others steps will run as described in Section 4
and prompt the user for the input required to finish the OS-
CAR installation. This allows the user to quickly skip past
steps that are the same every time and move on to step that
require interaction and new input each time.

6 Future Work

While some work on the CLI is completed, there is still
much more to do. The issue that currently holds the CLI
back the most is the separation of the logic and interface
code. From the beginning of the OSCAR project, the graph-
ical interface has been integrated into the logic code in many
places, specifically the MAC address selection and the Con-
figurator. Because of these problems, the CLI does not com-
pletely mirror the graphical version. Once the separation
between the two parts of the OSCAR code takes place, the
CLI and the GUI can use the same logic code. Other pos-
sibilities would include the GUI using the CLI as back-end
code. By doing these two things, the code would be much

21st International Symposium on High Performance Computing Systems and Applications(HPCS'07)
0-7695-2813-9/07 $20.00 © 2007

easier to maintain because there would only be one place
that would require updating.

7 Conclusion

This paper presents the design and implementation of a
menu based command line interface for OSCAR. This ap-
proach provides a powerful solution for both users and de-
velopers.

For users, the menu based CLI is a suitable solution for
reproducible installations, using the capability of logs from
a previous invocations. Also, a command line interface
is typically the preferred solutions for remote uses. Since
a GUI requires the execution of a graphical environment,
which is expensive in term of resource consumption, it is
cumbersome for OSCAR users to utilize a graphical wizard
interface via remote access methods.

For developers, a menu based CLI provides a major ca-
pability for enabling the creation of tools based on OSCAR;
the integration of the CLI being simpler than the integra-
tion of a graphical windowing environment. For instance,
a tool for automatic testing based on the CLI is currently
under development. Such a tool is mandatory to improve
the quality control procedures that are critical for OSCAR
developers since OSCAR currently supports several Linux
distributions and hardware architectures, which ultimately
leads to complex and expensive testing phases.

References

[1] Benoı̂t des Ligneris and F. L. Camargos. OSCAR CLI: A
Command Line Interface for OSCAR. In Proceeding of 2nd

Annual OSCAR Symposium (OSCAR 2004), Winnipeg, Man-
itoba Canada, May 16-19 2004.

[2] S. Dague. System Installation Suite Massive Installation
for Linux. In The 4th Annual Ottawa Linux Symposium
(OLS’02), Ottawa, Canada, June 26-29, 2002.

[3] Env-Switcher, http://env-switcher.sourceforge.net.
[4] J. L. Furlani and P. W. Osel. Abstract Yourself With Modules.

In Proceedings of the 10th Large Installation Systems Admin-
istration Conference (LISA’96), pages 193–204, Chicago, IL,
September 29 – October 4, 1996.

[5] B. Luethke, T. Naughton, and S. L. Scott. C3 Power Tools:
The Next Generations... In DAPSYS 2002, pages 82–89, Jo-
hannes Kepler University, September 29 – October 2, 2002.
Kluwer Academic Publishers.

[6] J. Mugler, T. Naughton, S. L. Scott, B. Barrett, A. Lumsdaine,
J. M. Squyres, Benot des Ligneris, Francis Giraldeau, and
C. Leangsuksun. OSCAR Clusters. In Proceedings of the 5th

Annual Ottawa Linux Symposium (OLS’03), Ottawa, Canada,
July 23-26, 2003.

[7] J. Spolsky. User Interface Design for Programmers. Apress,
2001.

[8] J. M. Squyres. Meta menu: A state-machine approach to
making menu-based systems. Meta Menu Project Web Page,
http://sourceforge.net/projects/metamenu/.

21st International Symposium on High Performance Computing Systems and Applications(HPCS'07)
0-7695-2813-9/07 $20.00 © 2007

